V1: Hände

Du benötigst 3 Schüsseln oder große Gläser.

In eine Schüssel füllst Du kaltes Wasser (Du kannst noch einige Eiswürfelstücken hineintun oder stellst es vorher eine Weile in den Kühlschrank), in die die mittlere Schüssel lauwarmes Wasser und in die dritte füllst Du heißes Wasser. Falls Du ein Thermometer hast, kannst Du die Temperaturen durch Zufügen von kaltem oder warmen Wasser wie folgt regeln: kalt ca. 10-15 Grad, lau warm ca. 20-25 Grad, heiß ca. 35-40 Grad (nicht heißer, ansonsten verbrühst Du deine Hand).

Stecke nun eine Hand in das kalte Wasser und die andere in das heiße Wasser und lass sie dort ca. 2-3 Minuten stecken.

Danach ziehst Du beide Hände heraus und tauchst sie beide in die mittlere Schüssel mit lauwarmem Wasser.

Was spürst Du?
Warum ist dies so?
Das Fazit oder die Erkenntnis (die Erklärung WARUM es so ist) nach dem Versuch und der Versuchsbeschreibung

Nach der Versuchsbeschreibung folgt noch der nächste und wichtigste Schritt:

Warum ist das so passiert und nicht anders?
Welche Erklärung gibt es dafür?

Welche Erkenntnis, welches Fazit ziehen wir aus dem Versuch?
Aus Versuch 1 und muss also folgendes Fazit gezogen werden.

<table>
<thead>
<tr>
<th>Versuch 1</th>
<th>Hände</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuchs- aufbau</td>
<td>Wir nahmen eine Schüssel mit kaltem (ca. 10 Grad), eine Schüssel mit lauwarmem (ca. 25 Grad) und eine Schüssel mit heißem Wasser (ca. 40 Grad).</td>
</tr>
<tr>
<td>Versuchs- durchführung</td>
<td>1. Wir tauchten unsere rechte Hand in das kalte Wasser und unsere linke Hand in das heiße Wasser und ließen sie ca. 3 Minuten im Wasser. 2. Wir zogen beide Hände aus dem kalten und heißen Wasser heraus und tauchten beide Hände in das lauwarme Wasser.</td>
</tr>
</tbody>
</table>

V2c: Salz und Zucker

Du benötigst 2 Gläser, kaltes und heißes Wasser, 2 Löffel, Salz und Zucker.

Fülle jeweils 1 Glas mit kaltem und heißem Wasser.
1. Schütte gleichzeitig in das kalte und das heiße Wasser je einen Löffel Salz (gleiche Menge).
Was kannst Du beobachten?
2. Schütte gleichzeitig in das kalte und das heiße Wasser je einen Löffel Zucker (gleiche Menge).
Was kannst Du beobachten?
3. Fülle nun beide Gläser mit kaltem Wasser und schütte gleichzeitig jeweils einen Löffel Salz und einen Löffel Zucker ein.
Was kannst Du beobachten?
4. Fülle nun beide Gläser mit heißem Wasser und schütte gleichzeitig jeweils einen Löffel Salz und einen Löffel Zucker ein.
Was kannst Du beobachten?
Was schließt Du aus den Versuchen?
Erkenntnisse aus V4a

Die Wärmestromung, auch Konvektion genannt, ist eine Form der Wärmeübertragung, bei der Wärme durch strömende Flüssigkeiten (z. B. Wasser) oder strömende Gase (z. B. Luft) übertragen wird.

Wie viel Wärme durch Wärmestromung übertragen wird, ist abhängig von dem Stoff, der die Wärme transportiert,
von der durchströmten Fläche,
von der Temperaturdifferenz,
von der Strömungsgeschwindigkeit,
von der Zeit.

V5b: Stahlbolzen

Sieh Dir den folgenden Versuch an und mache eine Versuchsbeschreibung und Skizze.

Experiment: Der Bolzensprenger
V6a: Draht

Du benötigst eine Flasche mit einem Deckel oder Korken, einen Eiswürfel, einen Draht und zwei Gewichte.

Mache an die Drahtenden zwei Schlingen und hänge daran zwei gleichschwere Gewichte.

Lege das Eisstück auf den Deckel und lege den Draht so über das Eisstück, dass die beiden Gewichte zur Seite nach unten hängen.

Beobachte nun in den nächsten Minuten, was passiert.
Warum?

...fest, flüssig, gasförmig...

Den Übergang vom festen in den flüssigen Zustand nennt man schmelzen, umgekehrt erstarren.

Den Übergang vom flüssigen in den gasförmigen Zustand nennt man sieden, umgekehrt kondensieren.

Den direkten Übergang vom festen in den gasförmigen Zustand nennt man sublimieren, umgekehrt resublimieren.
Magnetismus

V1a: Magnet

Du benötigst einen Küchenmagneten und einige Büroklammern, Stecknadeln, einen Nagel, eine 1-oder 2-Cent-Stück, eine 1-Euro-Münze, einen Radiergummi, ein Stück Holz, einen Stein, Glas, ein Blatt Papier und noch weitere Materialien...
Beobachtungen zu V1b-1d

V1b: 2 Magnete
Die beiden Magnete lassen sich nicht genau deckungsgleich aneinanderhalten. Sie stoßen sich teilweise ab und ziehen sich teilweise an.

V1c: Pappe und Brett
Der Magnet kann das Gegenstück auch durch die Pappe hindurch auf deren Oberseite hin- und herbewegen.

V1d: Magnetspur
Der untere Magnet kann den oberen Magneten hin- und herschieben. Der obere kann den unteren Magnet ebenfalls hin- und herschieben und kann ihn anziehen, ohne dass dieser herunterfällt.

Erkenntnisse aus V1a-V1d Magnete

Ein Magnet kann Dinge anziehen.
Ein Magnet zieht nur Dinge aus bestimmten Materialien an.
Ein Magnet zieht Dinge auch auf Entfernung an.
Ein Magnet zieht Dinge durch andere Materialien hindurch an.
Zwei Magnete können sich nicht nur anziehen, sondern auch gegenseitig abstoßen.
Ein Magnet hat immer zwei Pole, man nennt sie entweder Plus- und Minuspol oder Nord- und Südpol.
Auch ein einfacher Büro- oder Küchenmagnet hat zwei Pole. Man erkennt dies daran, dass sich zwei solcher Magnete nicht deckungsgleich aufeinander legen lassen.
Beobachtung zu V3a - V3c

V3a: Magnet und Draht

1. Das Teelicht schwamm auf dem Wasser und drehte sich dabei ohne Richtung hin und her.

2. Das Teelicht schwamm auf dem Wasser und drehte sich dabei immer in dieselbe Richtung, in Richtung des Magnetens außerhalb der Wasserwanne.

V3b: Nagelkorken

Wir sahen, wie der Nagelkorken im Wasser zunächst vom Magnetent weg mittig an die gegenüberliegende Seite der Wanne schwamm, bzw. getrieben wurde. Dann bewegte er sich in die vom Betrachter aus gespannte untere Hälfte der Wasserwanne, um dann wieder in die Richtung des Magnetens zu treiben. Zuletzt kippte der Nagelkorken um und blieb flach auf dem Wasser liegen. Die Nagelpitze zeigte in Richtung Südpol des Magnetens.

V3c: Eisenfeilspäne

Die Eisenfeilspäne ordnen sich in Richtung der beiden magnetischen Pole an, sowohl bei einem Stabmagneten als auch bei einem Flügelemagnet. Die Eisenspäne ordnen sich auch im dreidimensionalen Raum entsprechend den Magnetpolen zu, sie stehen im Magnetfeld auch entgegen der Schwerkraft aufrecht.
Erkenntnisse V3a-V3c Magnetfelder

Die Eisenfillspäne sind durch die Nähe zum Stabmagneten alle selber zu kleinen Magneten mit je einem Nord- und einem Südpol geworden. Sie wurden magnetisiert.

Wir können Magnetfelder nicht sehen oder spüren, weder das kleine Versuchsmagnetfeld noch das große, das unsere Erde umgibt - ganz im Gegensatz zu einigen Tieren: Zugvögel zum Beispiel wissen vermutlich anhand vom Erdmagnetfeld, wo es nach Norden und Süden geht.

V4a: Batteriemagnet

Sieh Dir den Bau des Batteriemagneten und den folgenden Versuch an und fertige eine Skizze und Versuchsbeschreibung an:
Erkenntnisse aus V4a und V4b

Anwendung von Elektromotoren

Die Anwendungsgebiete des Elektromotors reichen von den Tiefen des Meeres in mehr als 8.000 Metern bis hin zu den Nachbarplaneten, auf denen er irdische Raumfahrt-Roboter antreibt.

Die Hauptanwendung des Elektromotors liegt aber in der Industrie. Im Bereich der industriellen Roboter verwendet man häufig Gleichstromelektromotoren, da dort vergleichsweise kleine Leistungen gefordert sind und eine hohe Regelbarkeit.

Im Elektromotor wird die elektrische Energie durch die Erzeugung von Magnetfeldern in mechanische Energie umgewandelt.

Die Magnetfelder erzeugen dadurch Kraft, indem sie sich entweder anziehen oder abstoßen.

Über diese abwechselnde Arbeit wird zum Beispiel dann das E-Auto angetrieben.
Reibungselektrizität - Elektrostatik

Sicher hast Du schon folgendes erlebt:

Die Haare bleiben beim Kämmen am Kamm „kleben“ oder stehen plötzlich „zu Berge“, beim Ausziehen des Pullovers knistert es, Du fasst etwas oder jemanden an oder steigst aus dem Auto aus und bekommst einen leichten Schlag versetzt.

All dies sind Wirkungen von Reibungselektrizität oder von sogenannter elektrostatischer Ladung oder statischer Elektrizität.

Du kannst diese Art von Elektrizität auch selbst herstellen und ihre Wirkungen beobachten:

V1a: Luftballon

Du benötigst einen Luftballon, etwas Filz (oder ein echtes Fellstück oder Wolltuch), Papierschnipsel oder Konfetti und möglichst eine Person mit etwas längeren Haaren.

Zuerst bläst Du den Luftballon auf und verknotest ihn. Nimm das Stück Filz (oder die Wolle) und reibe mit ihm über den Luftballon.

1. Halte nun den Filz direkt über den Luftballon und lasse den Luftballon los?
 Was passiert?

 Was passiert?

 Was passiert?
 Warum?
V1c: Plastiktrinkhalm

Du benötigst einen Plastiktrinkhalm, ein Filztuch (oder ein echtes Fellstück oder Wolllot), Papierschnitzel, einen Wasserhahn, eine Wanne mit Wasser und ein Papierschiff.

Reibe den Strohhalm mit dem Filztuch mehrmals in dieselbe Richtung.
1. Halte den Trinkhalm an verschiedene Gegenstände, z.B. an eine Türkante, an eine Wand, an Kleidung... (eventuell muss Du ihn zwischen durch wieder reiben).
 Was passiert?
2. Reibe den Trinkhalm mit dem Filztuch und halte ihn über die Papierschnitzel.
 Was passiert?
 Was passiert?
 Was kannst Du beobachten?
 Wie kannst Du dir die Ereignisse erklären?

V2a: Kunststoffstab und Glasstab

Sieh Dir das Versuchsvideo an und schreibe Deine Beobachtungen auf:
Erkenntnisse Kunststoffstab und Glasstab

1. Die vorher neutrale Ladung im Glasstab verändert sich an der Stelle, wo der negativ aufgeladene Kunststoffstab in der Nähe ist und wird positiv. Deshalb ziehen sich beide an.

3. Der vorher positiv aufgeladene Glasstab verändert an der roten Seite seine Ladung nicht, wo der negativ geladene Kunststoffstab in der Nähe ist. Deshalb ziehen sich beide an.

Es gibt 2 Arten von elektrischer Ladung:
1. Positive Ladung (Glasstab)
2. Negative Ladung (Kunststoffstab)

Versuchsvideo 2b Elektroskop
Erkenntnisse Elektroskop

Es gibt 2 Arten von elektrischer Ladung:
Positive und negative Ladung.

Gleichenartige elektrische Ladungen (+ und + oder - und -) stoßen sich ab.
Ungleichenartige elektrische Ladungen (+ und - oder - und +) ziehen sich an.

Dieses Prinzip kennst Du schon vom Magnetismus her.

V3b: Influenz- oder Elektrisiermaschine

Sieh Dir folgendes Video an und beschreibe die ersten 3 gezeigten Versuche.
Erkenntnisse V4 Faradays Käfig

Ein Faraday-Käfig ist ein Metallkäfig bzw. ein von Metall umgebener Raum.

Werden auf diesen Metallkäfig elektrische Ladungen, z.B. durch einen Blitzschlag, gebracht, so verteilen sich die elektrischen Ladungen auf dem Metallkäfig und dringen nicht in den Innenraum ein. Im Innenraum ist man so vor einem Blitzschlag geschützt.

Ein Blitzableiter ist metallisch und hat eine hohe Leitfähigkeit.

Er wird am höchsten Punkt eines Gebäudes angebracht, da Blitze immer die kürzesten Wege wählen und in den höchsten Punkt einschlagen.

Der Blitzableiter auf dem Dach eines Gebäudes soll den Blitz abfangen und durch Fangleitungen an dem Gebäude vorbei in den Boden leiten. Dort befinden sich dann Platten oder ein Kupfernetz.

Wenn der Blitz auf diese Weise in die Erde abgeleitet ist, besteht für das Gebäude keine schwerwiegende Gefahr mehr.

Galvanische Elektrizität

Luigi Galvani, Professor für Anatomie an der Universität Bologna, sezivierte seit Jahren Vögel, Frosche und anderes Kleingefieder auf der Suche nach der Lebenskraft. Dieses geheimnisvolle Fluidum, das alles Lebenliche eine Zeitlang vor dem Verfall bewahrt, musste doch irgendwo seinen Sitz haben.

Doch erst durch einen Zufall entdeckte er, dass die Froscheschenkel scheinbar auch ohne äußere Elektrizitätsbewegung zuckten, als er einen Frosch mit einem Messinghalter an ein Eingitter hängte. Dieser Vorfall untersuchte er gewissenhaft in einem geschlossenen Raum. Immer, wenn er den Froscheschenkel mit einem Messinghalter auf eine Metallplatte brachte, zuckte er zusammen. Legte er ihn auf eine Glas- oder Steinplatte, so unterblieben diese Bewegungen.

Galvani konnte dieses Geheimnis noch nicht lösen. Er vermutete, dass es eine Art tierische Elektrizität geben musse, die vielleicht im Gehirn entsteht und in den Muskeln gespeichert wird. Im Jahre 1791 veröffentlichte er seine Versuche und förderte die Wissenschaft auf, das Geheimnis zu lösen. Sein Werk trägt den „schlichten“ Titel „De viribus electricitatis in motu musculari commentarius“. Die Übersetzung lautet etwa „Abhandlung über die Kräfte der Elektrizität bei der Muskeltätigkeit."
Erklärvideo 4 Stromkreis

Zusammenfassung Stromkreis

Ein Stromkreis ist ein abgeschlossenes System elektrischer Leiter, die so miteinander verbunden sind, dass elektrische Ladung "im Kreis" fließen kann.

Zu einem Stromkreis gehören mindestens 3 verschiedene Elemente:

1. Strom- oder Spannungsquelle (Batterie, Solarzelle, Kraftwerk...)
2. Stromverbraucher oder Stromwandler (Lampe, Waschmaschine, Computer,...)
3. Stromleitungen (sie verbinden Stromquelle und Stromverbraucher)

Elektrischer Strom fließt nur in einem geschlossenen Stromkreis. Ein solcher einfachen Stromkreis besteht mindestens aus einer elektrischen Quelle und einem elektrischen Gerät oder Bauelement, die durch elektrische Leitungen miteinander verbunden sind.

2. In einen Stromkreis kann auch ein zusätzlicher Schalter eingebaut werden, der den Stromkreis öffnet (=Strom fließt nicht und Lampe brennt nicht) oder schließt (=Strom fließt und Lampe brennt) werden.

Einen Stromkreis kann man symbolisch darstellen: Der Kreis mit dem Kreuz stellt die Lampe dar, das Plus- und Minuszeichen die Batterie, die beiden kleinen auseinanderliegenden Kreise mit einem Strich den Schalter. Die Leitungen (Leiter) werden immer durch gerade Linien dargestellt.
Spannung

Um das zu verstehen, kann man auch hier wieder einen Vergleich (Analogie) zum Wasser machen:

Das obige Bild rechts zeigt zwei Gefäße, die mit Wasser gefüllt sind, wobei das linke höher angefüllt ist als das rechte. Außerdem sind beide durch einen Schlauch miteinander verbunden. Allerdings ist diese Verbindung noch durch einen Absperrhahn unterbrochen.

Was passiert nun, wenn man die Verbindung zwischen den Gefäßen herstellt?

Das Wasser strömt vom linken Gefäß in das rechte Gefäß.

Aber woran fließt das Wasser überhaupt, und wie lange fließt es?

Daher fließt das Wasser bei geöffnetem Hahn vom linken Gefäß in das rechte Gefäß mit den höheren Bodendruck. Folglich strömt das Wasser so lange von links nach rechts, bis die Gefäßhöhe denselben Wasserstand habe, also der Druck am Boden der beiden Gefäße und somit der Druck an den Eingängen des Schlauches gleich groß ist (2. Bild von unten).

Analog (vergleichbar) kann man dir hoffentlich vorstellen, was Spannung in der Elektrizität bedeutet (siehe das Bild mit den + und - Ladungen).

"U" ist die Abkürzung für die Spannung, sie wird in der Einheit Volt gemessen, z. B. 1 V

Demonstrationsvideo 5 Reihenschaltung

Nachdem Du nun weißt, wie ein einfacher Stromkreis aufgebaut ist und welche Kräfte dort wirken, sieh Dir nun folgendes Video an, das zeigt, wie der Stromkreis um weitere Elemente erweitert werden kann:
Zusammenfassung Parallelschaltung

Bei der Parallelschaltung teilt der Strom sich auf beide Lampen auf. Wird bei einer Parallelschaltung eine Glühlampe entfernt, so leuchtet die zweite weiter.

Die Parallelschaltung, auch Nebenschaltung genannt, ist in der Elektrotechnik die Verbindung von zweipoligen Bauelementen oder Netzwerken so, dass alle ihre gleichnamigen Pole jeweils gemeinsam verbunden sind.

Bei einer Reihenschaltung liegen alle Glühlampen (Widerstände) in einer Leitung hintereinander.

Bei einer Parallelschaltung hingegen teilt sich die Leitung auf, die Glühlampen (Widerstände) liegen in einzelnen Leitungen.

Bei der Reihenschaltung fließt der gleiche Strom durch alle Glühlampen (Widerstände), bei der Parallelschaltung teilt sich der Strom auf.

Der Stromkreis in einem Haus ist parallel geschaltet, also z.B. alle Steckdosen.

Im Haushalt sind die Elektrogeräte parallel geschaltet. Die Sicherung springt in den meisten Haushalten an, wenn der Strom 16 Ampere überschreitet.

Erklärvideo 8 Wechselschaltung
Schaltung mit mehr als 2 Schaltern - Kreuzschaltung (optional Klasse 8)

Erkenntnisse Leiter und Isolatoren

Metalle und Salzwasser sind gute Stromleiter, andere wiederum nicht.
Dies macht man sich bei der Herstellung der Leitungen, bzw. Stromkabel zu nutze.
So leitet beispielsweise Kupfer Strom sehr gut und ist deshalb auch im inneren der Stromkabel vorhanden.
Außen um das stromleitende Kupferkabel wird heutzutage meist Kunststoff verwendet, da er Strom sehr gut isoliert und außerdem in der Form sehr anpassungsfähig ist und fast jede Biegung der Stromleitung mitmacht.